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Prediction in supervised learning

• Prediction: In developing prediction algorithms to be used in 
clinical practice, the usual goal is to accurately predict an 
outcome, which is observed in the sample used for model 
development, but is unobserved and needs to be predicted 
among new patients. 

• Supervised learning methods mostly assume a simple, clear 
univariate outcome. It lets us focus on handling of a large 
pool of possible predictors of the outcome without worrying 
about the outcome itself. 

• A single observed measure can be unreliable and can be far 
from a good representation of a particular patient's true 
outcome status. 
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Improving the output side of prediction

• In the sample used in model development, abundant 
information is often available not only on the predictor 
side, but also on the outcome side. 

• An ideal solution would be to create more reliable and valid 
outcome variables using multivariate information without 
losing the simplicity of a single observed outcome.

• How do we effectively organize (unsupervised learning) 
complex outcome data and still preserve its rich 
information?  

• Latent variable (LV) modeling is a promising way to 
achieve these seemingly conflicting goals.
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Why didn’t this happen already?

• In behavioral/psychological science research, LV modeling is 
mostly used for inference and building theoretical models

- Developing prediction models/algorithms that will be deployed in 
clinical practice (or industrial) has not been a typical goal. 

- Predictive relationships are studied for inference/interpretation.

➢ No need for reframing LV modeling as an unsupervised learning tool

➢ No benefits of using supervised learning (LV modeling is sufficient 
to study predictive relationships) 

• Despite great potentials, little interest in how LV modeling 
can play a major role in this promising venue, prediction.
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Why didn’t this happen already?

• In supervised learning, possible benefits of incorporating LV 
modeling is basically unknown.

• In unsupervised learning, there are various established 
techniques such as K-means. Why bother with mysterious LV 
modeling? 

• How LV modeling is conducted in behavioral science is not 
quite compatible with machine learning (cf. model-based clustering 
by Raftery’s group, a successful exception).

• No established framework that shows how LV modeling can 
be incorporated into the standard process of building 
prediction algorithms in the machine learning framework
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Some signs of integration

• There have been some developments to improve LV 
modeling and SEM by incorporating the concepts and 
strategies from predictive modeling and machine learning. 

• Cole and Bauer (2016) discussed the importance of examining 
the individual level predicted values in the longitudinal 
context to improve understanding (inference) about the 
predictive relationship in theory-driven models. 

• Brandmaier et al. (2013) introduced regression tree methods 
to combine exploratory and confirmatory approaches with 
the goal of improving SEM model building. 

• One way integration - the goal is to improve inference and 
model building. 
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Motivating/tricky situation

• Theoretical psychologists and modelers

• Machine learners (unsupervised and supervised)

• Statisticians 

• Medicine (clinicians and clinical researchers)

– Psychiatry 

– Diabetes

– CVD

– Developmental and aging related outcomes

– Many other where multivariate/longitudinal patterns matter

– Both prognosis and diagnosis 
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Motivating example: LAMS

• Longitudinal Assessment of Manic Symptoms Study (Findling
et al., 2010; Horwitz et al., 2010; Youngstrom et al., 2008)

• Children aged 6-12 years at baseline

• Focused on elevated symptoms of mania over time, which 
fundamentally differentiates it from other studies that have 
focused on diagnosis of bipolar disorder and its risk.

• Primary outcome: PGBI-10M (Parent General Behavior 
Inventory–10-item Mania Form) (Youngstrom et al., 2008)

• Outcomes were measured every 6 months for 10 years, 
leading to an impressive collection of rich longitudinal data. 
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Clinical need for prediction: LAMS

• Early prediction of outcome progression is crucial in 
treatment decision making and patient care. 

• In particular, separating out patients who would maintain 
moderate levels of symptoms (low risk) is critical in planning 
optimal treatments, better allocating resources, and reducing 
patient burdens. 

• Great interest in developing prediction models using the 
LAMS data that can be deployed in clinical practice to aid 
prognosis among incoming patients. 
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What to predict: LAMS

• Constructing a simple, reliable, and valid prediction target is 
the critical first step in developing useful prediction models.

• Uniqueness of clinical prediction: unlike in industrial 
prediction models, using clinically meaningful and 
interpretable outcomes and predictors is important in clinical 
prediction models.

• Given the richness of longitudinal data, it is not self-evident 
how to formulate a simple prediction target that best 
captures individuals' longitudinal symptom patterns. 
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What to predict: LAMS

• Difficulties in effectively characterizing longitudinal 
progression at the individual level.

• Ad hoc approaches: predict outcome at each time point, an 
average, a peak, dichotomized using a cutpoint, etc. - not 
the best way to characterize/utilize rich patient data.

• Standard single-class linear mixed effects modeling does not 
provide good individual level summary measures that can be 
used as prediction outcomes.

• Using latent classes seems to be a promising way of 
effectively organizing complex outcome data – also well 
aligned with categorical decision making in clinical practice.
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Why categorize: LAMS

• In clinical practice, clinicians need to make swift decisions. 

• Clinical decisions are often made in a categorical manner 
(e.g., surgery or not, medicine or not, treatment A or B). 

• Categorical decision making is facilitated by categorized 
outcomes (disease or not, high or low risk) often using 
clinical cutpoints. E.g.,

– Elevated symptoms of mania if PGBI-10M >=12

– PHQ9 total (moderately severe depression if 15-19, severe 
depression if 20-27)

– Cholesterol (total < 200 mg/dL, Triglycerides < 150, LDL < 130, 
HDL > 55 (females) & > 45 (males))

– A1C (normal if < 5.7%, prediabetes if between 5.7-6.5, diabetes 
if >= 6.5)
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Why LV modeling: LAMS

• Why not use simple clinical cutpoints that are well 
accepted?

– To better characterize individuals utilizing multivariate 
outcome information.

– To generate prediction outcomes with improved reliability 
and validity

– To develop prediction models/algorithms with improved 
accuracy and generalizability
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3-STEP LEARNING FRAMEWORK



3-Step Learning Framework

• Step 1. Generate latent outcome labels

– Using LV modeling, generate outcomes to be used as output in 
prediction models. In line with LAMS and common clinical decision 
making, we focus on generating binary risk labels using latent class 
and clustering results. 

• Step 2. Systematically validate generated risk labels

– Following the psychometrics tradition, we validate a large pool of 
candidate labels using well-structured explicit validators (concurrent, 
antecedent, consequent validators). 

• Step 3. Using the validated risk labels, develop prediction 
models in the supervised learning framework 
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A 3-step learning pipeline with LV modeling
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A 3-step learning pipeline with LV modeling

19



STEP 1. Generate LV-based risk labels
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1.1. Identify latent classes and clusters

• We used 2 LV approaches so far

– Growth mixture modeling (GMM)

– Model-based clustering (MBC)

• We used 1 model-free, non-LV approach

– K-means clustering (K-means): not model based, but is the most 
commonly used clustering method, well-covered in any machine 
learning textbooks. We used kmeans function in R.

• All these approaches can be seen as clustering

• All these approaches can be seen as unsupervised learning 
(no direct measures of success such as prediction accuracy)
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GMM & MBC

• Both utilize finite mixture modeling. We can use the common 
framework for the two methods.

• Let us consider data with d multivariate measures for unit i
(individual i in LAMS application). i.e., 

• The probability distribution of     with J mixture components  
( j = 1,2,...,J) can be expressed as

where      is a vector of model parameters for the      class or mixture 
component, and      is the proportion of the population from the 
component with                .

• GMM focuses on modeling the trend, whereas MBC focuses
on modeling the covariance structure.
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Growth mixture modeling (GMM)

• A popular method of discovering latent trajectory types in 
various areas of research (Muthén & Shedden, 1999), although 
not incorporated in the unsupervised learning tool box yet.

• Focus on inference/interpretation about longitudinal patterns 
- relatively simple and interpretable parametrization 
(explicitly model where they start, how they change).

• Unlike in industrial prediction models, using clinically 
meaningful and interpretable outcomes and predictors is 
important in clinical prediction models.

• GMM seems to be a promising unsupervised learning tool to 
generate good prediction output (also input).
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GMM for LAMS

• The outcome Y for individual i (i=1, 2,..., N) at time t (t=1, 2,..., 
d) conditioned on trajectory class          can be expressed as

where there are three growth parameters to capture change: initial 
status (    ), linear (    ) and quadratic growth (    ) for trajectory class j. 
The time measure     reflects linear and      quadratic growth. We 
assumed                        and                     . 

• Complex models with fewer or simple models with more classes -
for LAMS, we used simple models without covariates. Radom 
intercept and no random effect models are included. In principle, a 
large pool of models can be used (Step1 can be automated).

24



GMM for LAMS

• ML-EM estimation using Mplus (Muthén & Muthén, 1997-2017)

• The posterior class probability of subject i belonging to class j 
conditioned on observe data (  ) and the current estimates of 
model parameters (            ) in the iterative procedure is 
expressed as

• is valuable summary information that characterizes each person.

• Excluding models with classes with <10 individuals, a total of 13 
models reached normal convergence (6 random intercept models with 
2-7 classes, 7 no random effect models with 2-8 classes).
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Model-based clustering (MBC)

• MBC is a line of method that focuses on identification of latent 
classes (clusters) based on finite mixture modeling of 
multivariate normal distributions (Bouveyron et al., 2019; Fraley & 
Raftery, 2002; Scrucca et al., 2016). 

• GMM and MBC basically share the same analytical (finite 
mixture modeling) and estimation (ML-EM or Bayesian) strategies.

• MBC is a more widely known tool for unsupervised learning (e.g., 
imaging data, microarray data, retail barcode data). 

• Whereas the signature feature of GMM is modeling of 
longitudinal trends, the signature feature of the currently known 
MBC is the use of geometric constraints on the covariance 
matrix of multivariate data. 
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MBC for LAMS

• In MBC, without any parameters to model the longitudinal trend, 
the multivariate data                      conditioned on class      
can be simply expressed as

where various geometric constraints on the variance/covariance matrix 
of       are the key to the identification of latent clusters. 

• Geometric constraints are imposed on volume, shape, and 
orientation of the ellipsoidal distribution (Bouveyron et al., 2019; 
Lebret et al., 2015; Scrucca et al., 2016).

• ML-EM estimation using R package mclust (Scrucca et al., 2016), 

which has 14 types of constraints on the covariance matrix (EEE, 

EEI, EEV, EII, EVE, EVI, EVV, VEE, VEI, VEV, VII, VVE, VVI, VVV). 
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MBC for LAMS

• The posterior class probability of subject i belonging to cluster j 
conditioned on observed data (  ) and the current parameter 
estimates (       ) in the iterative procedure can be expressed 
as

• is valuable summary information that characterizes each 
individual.

• Using the LAMS data, we estimated a series of MBC models using 
all 14 types of geometric constraints allowing up to 19 classes. We 
obtained a total of 135 MBC models with 2-19 classes.
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1.2. Generate simple outcome labels

• Clinical decisions are often made in a categorical manner 
(e.g., surgery or not, medicine or not, treatment A or B). 

• Categorical decision making is facilitated by categorized 
outcomes (disease or not, high or low risk). 

– E.g., in LAMS, separating out patients who would maintain moderate levels 

of symptoms (low risk) early on is critical in planning optimal treatments, 

better allocating resources, and reducing patient burdens.

• It is practical to further simplify generated latent classes 
and clusters in line with the intended clinical utility.

• This will also make the generated outcome labels easier to 
handle in supervised learning - note that we are shifting our
interest from inference to prediction.
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1.2. Generate simple outcome labels

• We focus on regrouping of individuals into two groups

– In all possible ways, and therefore results in a large pool of 
candidate binary outcome labels. E.g., from LAMS,  
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1.2. Generate simple outcome labels

• At the individual level, splitting or coarsening of clusters is 
straightforward when each person belongs to only one cluster

– When using K-means, each person can be categorized into one of 
the coarsened groups his or her cluster belongs to. 

– When using a cutpoint, each person can be categorized by applying 
a cutpoint (e.g., PGBI-10M >=12 as elevated risk in LAMS) to one 
of the observed outcome measures (e.g., at 24 months), or to the 
maximum or average of all targeted outcome measures (e.g., at 6, 
12, 18, and 24 months). 
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1.2. Generate simple outcome labels

• When using LV modeling, regrouping at the individual level 
based on the posterior class probability ( ). 

• Based on model    and splitting method                   , let      
stand for the coarsened posterior probability of person  
belonging to the first group and           for the second group. 

e.g., from gmm-8, person i has a set of posterior class probabilities,

. One possible split would be into

and                         .
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1.2. Generate simple outcome labels

• One simple way to utilize coarsened posterior class 
probabilities is to create a binary label by dichotomizing     .  

i.e.,

• We will use this strategy to simplify comparisons across soft 
clustering (GMM, MBC), hard clustering (standard K-means), 
and cutpoint-based categorization methods. 

• With the LAMS data, we obtained 367 binary labels based on 
GMM models, 954,755 labels based on MBC models, and 6,142 
labels based on K-means. All automated in our program.

• When using LV modeling (soft clustering), it is in principle 
possible to account for uncertainty in cluster assignment (e.g., 
Jo et al., 2017).    
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1.2. Generate simple outcome labels

• Having simple output variables is a big step toward supervised 
learning. However, being simple does not guarantee the validity 
of the outcomes. 

• LV modeling can generate a large pool of candidate outcomes 
in the absence of known truth, which can be viewed as a big 
drawback. 

• The same exploratory situation can be viewed as an 
opportunity to tailor the most desirable prediction targets 
based on good validation strategies. 

• Observed and cutpoint-based measures do not possess such 
flexibility. 
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STEP 2. Systematic validation of generated 
outcome labels
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Validating candidate outcomes

• In supervised learning, a large number of candidate models 
are systematically evaluated in terms of direct measures of 
success such as prediction or classification accuracy.

• This is possible due to the simple structure of considered 
models (predictors and the predicted). 

• It is typically assumed that the outcome is clear, simple, and 
readily available in the data, which lets us focus on 
assessing how accurately and stably various combinations 
or subsets of predictors predict the outcome. 

• From the perspective of supervised learning, validating 
outcomes before predicting them is a foreign concept and 
an unnecessary step.
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• In psychometrics, it is a long tradition to question the 
validity of measured outcomes. 

• Various concepts have been developed to enhance 
validation of tests or measures that are intended to capture 
true status of outcomes that are hard to quantify such as 
intelligence, aptitude, and various psychiatric outcomes. 

• An LV-based outcome can be simply thought of as a new 
test or a measure that needs validation before it gets 
presented as a competitive alternative. 

• Validation is particularly important as it gives LV-based
outcomes concrete meanings by connecting them with 
scientifically or clinically meaningful validators. 
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Clinically meaningful validators

• In line with the psychometrics tradition, we will use well-
structured validation with multiple criteria. Specifically, we will 
use clinically meaningful validators selected by experts in 
clinical and psychometrics fields. 

• Validation: the selected LV-based outcomes will be closely 
aligned with contemporary science and clinical practice, 
leading to easy interpretation and clear communication across 
all involved parties (outcome developers, prediction algorithm 
developers, clinical researchers, practitioners, and patients). 

• Selection: given the exploratory use of LV modeling in our 
context, using explicit validators is probably the simplest and 
fastest way to evaluate and narrow a large pool of 
constructed outcomes. 
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Clinically meaningful validators

• Focusing on the LAMS context, we chose three types of 
validators targeting to identify outcome labels that well capture 
long-term progression of manic symptoms.

– Concurrent validator (Z): This is a primary validator that ensures that 
developed measures are closely related to what is currently used and 
well-accepted (the incumbent). An established clinical cutpoint (any 
PGBI-10M >=12 as elevated risk) is applied to all repeated measures 
within the prediction range (6 to 24 months). 

– Consequence (Q): Consequences are future outcomes that are 
supposed to be correlated with the developed measures. In LAMS, 
distal future risk beyond the timeframe of prediction interest. The same 
cutpoint is applied to all PGBI-10M measures between 30 to 48 months.

– Antecedents (W): Clinically relevant variables that precede and are 
supposed to be correlated with the new measure. In LAMS, our clinical 
experts identified 3 variables (bipolar diagnosis, anxiety by SCARED-P, 
depression by CDRS-R) as directly relevant clinical antecedents.
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Towards Automation

• The flexible nature of LV modeling can make resulting LV-
based outcomes look subjective and esoteric. Not attractive 
as prediction output, especially with a large number of 
candidate outcomes and apparently cumbersome extra steps.

• Integrating the validation concept from psychometrics and 
having a structured validation plan using explicit validators 
dramatically changes this situation. 

• This means that automation of the validation process is 
possible guided by experts' knowledge and clinical practice.

• This makes LV modeling a more adoptable option in 
formulating prediction outcomes despite some extra steps.
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Validation in the prediction framework

• The association between a candidate outcome label from 
Step 1 and each set of validators can be put in the 
prediction framework, e.g., using logistic regression, as

• The estimated           can be categorized to form a 
predicted outcome label for individual i as
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Validation in the prediction framework

• To measure the degree of agreement between the candidate 
label (    ) and the estimated label (                          ), we 
used Cohen's    (Cohen, 1960).

• We used K-fold cross-validation (CV) to take into account 
generalization error (variation across samples), which is a 
common practice in supervised learning, although not in the 
psychometric validation context (Jo et al., 2017, 2018).

• Combining these traditions, cross-validated kappa for a 
candidate label      using validator   can be calculated 
averaging across K folds (f=1,2,3,...,K) as
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Validation in the prediction framework

• The associated standard error for can be calculated 
considering the variance across K folds as
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Validation results in the LAMS example

• We first selected 10 best candidate labels from each method 
based on their association with primary validator Z.

• Then, we eliminated those that are worse than the best based 
on all accounts (i.e., association with Z, Q, and W).

• Using this simple rule, we selected two best outcome labels 
from each method. The choice among selection rules depends 
on the intended utility of generated labels. 

• One alternative would be to average association measures with 
equal weights (all-around). Another alternative would be to 
focus more on Q (future risk), which will lead to selection of 
labels that are good predictors of distal outcomes. 

• In LAMS example, we focus more on Z given our interest in 
generating risk labels to be used as outputs in developing 
prognostic algorithms. 
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Validation results in the LAMS example
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• The results clearly show the benefits of using clustering, both LV-based 

(GMM, MBC) and K-means-based. 



Validation results in the LAMS example: 
clustering vs. cutpoint
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• The results clearly show the benefits of using clustering, both 
LV-based (GMM, MBC) and K-means-based. 

• Even the primary validator (Z) shows weaker association with 
the rest of validators (Q, W). 

• Cutpoint-based labels categorized much fewer patients as 
elevated risk, misaligned with the clinical intention of safely 
separating out low risk patients, implying missed opportunities 
for proper early treatments for elevated risk patients. 

• Clustering methods can generate a large pool of candidate 
labels, which makes it possible to select tailored labels that 
are well-aligned with clinical validators. Cutpoint-based labels 
lack such flexibility. 



Validation results in the LAMS example
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• The results show that the validation results are remarkably comparable 

across different clustering methods (GMM, MBC, K-means). 



Validation results in the LAMS example: 
across different clustering methods
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• Validation results are remarkably comparable across different 
clustering methods despite their distinct approaches. 

– Based on the top binary labels (gmm-8, vvi-2, kmeans-10), the agreement 

between GMM and MBC is 94.6%, between K-means and GMM is 94.6%, 

between MBC and K-means is 96.1%. Across the three methods, 92.7% of 

individuals are consistently labeled (either as elevated or as low risk). 

• Such agreement is not surprising given that these labels have 
been already selected out of a very large pool of candidate 
labels based on the same clinical validators.

• One may still attempt to choose one best label for the 
intended purpose, e.g., by examining individual patients that 
showed any disagreement in labeling across methods (7.3% of 
the LAMS sample).



Examples of disagreement across outcome labels
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• Patients A and B are labeled as elevated risk by all methods except in the 

cutpoint-based method using the average PGBI-10M. Their averages are 
less than 12 even though some scores are well over 12. Their scores are 
also trending up, a concerning pattern from the experts' point of view. 



Examples of disagreement across outcome labels
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• Patients C and D are labeled as low risk by all methods except by Z. These 

patients have one PGBI measure at the cutpoint, although the rest are 
safely below the cutpoint. 



Examples of disagreement across outcome labels
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• Patients E and F show examples of disagreement between kmeans-10 and 

the other risk labels. Patient E is labeled as low risk by all methods except 
by kmeans-10. Patient F has two scores that are 12 or greater, although 
labeled as low risk by kmeans-10.



Examples of disagreement across outcome labels
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• G and H show examples of disagreement between vvi-2 and the others. 

Patient G is labeled as elevated risk only by vvi-2, which seems overly 
conservative even with some earlier missing data. Patient H has one score 
above the cutpoint at baseline, and has several missing measurements. 

Only vvi-2 and experts labeled this patient as elevated risk.



Examples of disagreement across outcome labels
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• Patients I and J show that vvi-2 is not necessarily the most conservative 

of the three clustering methods. 



Utilizing multiple clustering methods
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• Utilizing multiple clustering methods seems to be an effective 
way of narrowing patients that are difficult to classify. This 
makes careful examination by clinical experts feasible. 

• Such examination results can be incorporated into and improve 
the validation process, e.g., by formulating a more elaborate Z, or 
by modifying the labeling process based on experts' ratings. 

• In the LAMS example, a GMM-based label (gmm-8) turned out 
to be somewhat better aligned with experts' labeling
– One possible explanation would be that clinical experts will consider not 

only the cutpoint, but also how the scores change over time. 

• Note that the three methods were largely consistent in labeling 
the patients (92.7% agreement in LAMS). Further investigation 
is necessary in various application contexts. 



STEP 3. Prediction of validated and selected 
outcome labels
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Supervised learning with selected labels

56

• Once the best label is validated and selected based on clinical 
validators and practical utilities, we can focus on developing 
prediction models in Step 3. 

• In principle, a selected label from Step 2 can be used as a 
known input or output variable with any supervised learning 
methods. 

• However, note that the validation step is closely aligned with 
the intended clinical utility.

– In the LAMS example, we focused on a concurrent validator (Z) given 
our interest in generating a risk label to be used as an output variable in 
prognostic models. In other words, it is not ideal to use the best label 
from Step 2 as a predictor (input) variable in Step 3. If generating risk
labels as input variables is the goal, the validation process should put 
more emphasis on Q (a consequent validator) than on Z. 



Supervised learning with selected labels

57

• Once the validation step is completed and the best risk labels 
are selected, one can focus on supervised learning with a 
wider array of possible predictors. 

• Let     represent the set of baseline variables to be used as 
predictors. In the clinical context,    is expected to provide not 
only good prediction, but also good interpretation. In that 
sense,    can be thought of as an expanded version of    , a 
minimal set of core antecedent validators carefully selected by 
clinical experts. 

• In the LAMS example, in addition to the antecedents used in 
the validation step (anxiety, depression, bipolar diagnosis), four 
more variables were included in    . They are baseline PGBI-10M
and key demographic variables, typically correlated with 
psychiatric outcomes including age, sex, and health insurance 
as a proxy for socio economic status. 



Supervised learning with selected labels
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• For the demonstration purpose, we used simple logistic 
regression, the same method used in the validation step. 

• Prediction performance measures including AUC (area under 
the curve) and their standard errors were calculated in the 
same way used in the validation step. 

• We used 70% of the full data (Data A) to train prediction models 
using 10-fold CV. The rest 30% of the data was used as a test 
data (Data B) to examine whether the prediction algorithm 
built based on Data A would be generalizable outside Data A.

• The goal of Step 3 is not to compare different labels, but to 
develop prediction models using already validated and selected 
labels from Step 2.



Prediction Results in the LAMS Example
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• The results are highly comparable across different clustering-based labels, 

both LV-based (GMM, MBC) and K-means-based.



Prediction Results in the LAMS Example
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• The results are highly comparable across different clustering-based labels, 

both LV-based (GMM, MBC) and K-means-based.

• gmm-8 is slightly better predicted in the test data, although the differences 
are small.



Prediction Results in the LAMS Example
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• The results are comparable across different clustering-based 
labels, both LV-based (GMM, MBC) and K-means-based, 
which was expected given their good agreement due to our 
validation method. 

• All three clustering-based labels also show stable results 
between the train and test data, which is an important 
property in prediction. 

• The GMM-based label (gmm-8) is slightly better predicted in 
the test data, although the differences are small and the 
results may change as we introduce more covariates and use 
various supervised learning methods. 

• Overall, prediction using clustering-based outcome labels 
showed promising results with AUC around 0.8, which is 
practically meaningful.



Prediction Results in the LAMS Example
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• The differences between Z and clustering-based labels are 
quite noticeable. This does not necessarily mean that Z is a 
worse label, although knowing that Z will be harder to predict 
is certainly useful. 

• The prediction results for Z are more variable between the 
train and test data, especially in terms of specificity, implying 
possible difficulties in applying prediction models developed 
based on Z. 

• The results based on LAMS should be considered preliminary.

• Fuller investigation with a larger pool of input variables using 
various supervised learning strategies is in order to formally 
develop prediction models that are ready to be deployed in 
clinical practice.



Conclusions
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• Using LV-based outcomes in developing prediction models is 
not a well-accepted concept either in LV modeling or in 
supervised learning. 

• This is an unfortunate situation because LV strategies will 
facilitate utilization of rich outcome data collected from 
research and health services, which may lead to improved 
prognostic or diagnostic models for future patients. 

• As a way of improving this situation, this study proposed a 
learning framework that combines the traditions of LV 
modeling, psychometrics, and supervised learning. 

• At the core of this framework is the structured use of clinical 
validators, which makes systematic validation of LV-based 
outcomes possible guided by experts’ knowledge and clinical 
practice. 



Conclusions

64

• The example showed the possibility that, with structured sets 
of validators, a large pool of candidate risk labels can be 
swiftly validated and selected. 

• This means that it is possible to automate the validation 
process, which is important in that it will encourage the use of 
LV-based outcomes in building prediction models and in 
supervised learning. 

• The proposed framework, if successfully adopted, will help 
position LV modeling as a key contributor in developing 
prediction models and in supervised learning in general.



Conclusions
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• In the LAMS example, the validation results supported the use 
of clustering-based labels instead of cutpoint-based labels 
including the currently used best label (i.e., concurrent validator Z). 

• It is important to note that the choice among the validation 
rules depends on the intended utility of generated labels. We 
see this flexibility as an advantage of our framework.

• Utilizing multiple clustering methods provides an opportunity to 
identify a small portion of cases that are difficult to classify, 
dramatically narrowing the pool of patients that need to be 
carefully examined by clinical experts. 

• These cases with disagreement across clustering methods also 
show the value of including LV-based methods even though the 
common K-means clustering does a comparable job.



Ongoing & future work
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• Some immediate extensions include the use of three-category 
labeling (e.g., low, medium, high risk), joint prediction of 
multiple outcomes (e.g., manic symptoms and anxiety), and 
incorporation of broader unsupervised/supervised methods. 

• Dealing with the uncertainty surrounding the cluster/class 
membership. We are actively exploring practical strategies to 
smoothly connect LV-based soft clusters with various 
supervised learning methods. 

• Explore various application possibilities. e.g.,

– Using simplified and validated LVs can be an attractive and practical 
strategy to deal with complexities in building theoretical models. 

– Applying the proposed framework in developing algorithms to help 
clinical diagnosis (instead of prognosis) also seems promising.



Software
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• The initial 3-step learning framework has been automated
and will be available soon (as free R package).

• Almost ready!
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